Closing Thurs: 5.1/5.2, 5.3
Closing Sun: Optional Ch. 2 Review Exam 2 is Tuesday, Nov. $\mathbf{2 2}^{\text {nd }}$ No lecture Wednesday, Nov. 23 ${ }^{\text {rd }}$.
5.3: More About Exponentials and Logs

Recall: Here is your full solving toolbox
Add./Sub.: $\quad y=x+a \leftrightarrow \mathrm{y}-\mathrm{a}=x$
Mult./Div.: $\quad y=m x \leftrightarrow \frac{\mathrm{y}}{\mathrm{m}}=x$
Powers/Roots: $y=x^{n} \leftrightarrow \mathrm{y}^{(1 / n)}=x$
Exponentials/Logarithms:

$$
\begin{aligned}
y=b^{x} \leftrightarrow & \log _{\mathrm{b}}(y)=x \\
& \text { "log base b"" }
\end{aligned}
$$

Note: $\ln (y)=\log _{\mathrm{e}}(y)$
"natural logarithm"

Entry Task: Review of all solving. Get out your calculator and solve these equations

Equation	Inverse
$x+3=14$	$x=$
$y-5=22$	$y=$
$3 t=16$	$t=$
$\frac{m}{0.2}=100$	$m=$
$x^{2}=7$	$x=$
$\sqrt{y}=3$	$y=$
$t^{5}=20$	$t=$
$\sqrt[5]{w}=3$	$w=$
$e^{x}=10$	$x=$
$\ln (y)=3$	$y=$
$5^{t}=60$	$t=$

Another perspective: Many students think of inverses as "canceling".
Examples:

$$
\text { 1. } x-5=22 \rightarrow x-5+5=22+5
$$

Directly from Homework:

5.1/5.2: Problem 8

Solve $\frac{1}{6} e^{-4 t}=0.9$
2. $3 t=16 \rightarrow \frac{3 t}{3}=\frac{16}{3}$
3. $t^{5}=20 \rightarrow\left(t^{5}\right)^{\frac{1}{5}}=(20)^{\frac{1}{5}}$
4. $e^{x}=10 \rightarrow \ln \left(e^{x}\right)=\ln (10)$
5. $\ln (y)=3 \rightarrow e^{\ln (y)}=e^{3}$

All solving is just using inverses in the correct order.

5.1/5.2: Problem 10

Solve $8 e^{2 t-5}=24$

5.3: Problem 5

Solve $65=\frac{75}{1+5 e^{-0.3 x}}$

5.3: Problem 4

Solve $77=100-100 e^{-0.08 x}$

$$
\begin{aligned}
& \text { Basic Logarithm Facts } \\
& \begin{array}{|c}
\text { Rule } \\
\hline 1=e^{0} \text { so } \ln (1)=0 \\
e=e^{1} \text { so } \ln (e)=1 \\
\hline \ln (a b)=\ln (a)+\ln (b) \\
\hline \ln \left(\frac{a}{b}\right)=\ln (a)-\ln (b) \\
\hline \ln \left(\boldsymbol{a}^{\boldsymbol{b}}\right)=\boldsymbol{b} \ln (\boldsymbol{a}) \\
\hline \ln \left(e^{x}\right)=x \\
e^{\ln (y)}=y
\end{array}
\end{aligned}
$$

5.3 Problem 1:

Solve $6^{5 x}=56562$

5.3: Problem 2

Solve for $\mathrm{x}: 0.23 P=P(2)^{-x}$

Aside (You don't need to write this)
Example to illustrate the rules

From last time, you should already know:

$$
\frac{e^{3} e^{4}}{e^{2}}=\frac{e^{7}}{e^{2}}=e^{5}
$$

So

$$
\ln \left(\frac{e^{3} e^{4}}{e^{2}}\right)=\ln \left(e^{5}\right)=5
$$

But the rules say this is the same as

$$
\begin{aligned}
\ln \left(\frac{e^{3} e^{4}}{e^{2}}\right) & =\ln \left(e^{3} e^{4}\right)-\ln \left(e^{2}\right) \\
& =\ln \left(e^{3}\right)+\ln \left(e^{4}\right)-\ln \left(e^{2}\right) \\
& =3+4-2=5
\end{aligned}
$$

So, in this says, the log rules are just a repeat of the exponent rules.

The Ch. 5 homework just gives practice with plugging in and solving. Here are the "hard" problems:
5.3: Problem 7: Given $P=A e^{-0.05 t}$
(a) $A=75000, P=40000$, what is t ?
(b) $P=60000, t=10$, what is A ?
5.3: Problem 8: Given $y=P_{0} e^{h t}$

Given in $1998(\mathrm{t}=0$), $\mathrm{y}=100,000$:
so $100000=P_{0} e^{h(0)}$
Given in 2008 ($\mathrm{t}=10$), $\mathrm{y}=110,365$:
so $110365=P_{0} e^{h(10)}$
Asked: in 2023 ($\mathrm{t}=25$), what is y ?
5.3: Problem 9: Given $p=100 e^{-\frac{q}{2}}$
(a) If $q=4$, what is p ?
(b) If $p=2.01$, what is q ?

5.3: Problem 10:

Given $p=500 e^{-0.07 x}=$ price.
What is revenue when $\mathrm{x}=100$?
5.3: Problem 11: Given $S=8500 e^{0.039 t}$ Note: 22 months is the same as $\frac{22}{12}$ years (a) What is S when $t=\frac{22}{12}$ years?
(b) What is t when S is twice the initial value? (the initial value is 8500).
5.3: Problem 12:Given $S=6000(1.005)^{t}$
(a) What is S when $t=1$?
(b) What is t when S is twice the initial value? (the initial value is 6000).
5.3: Problem 13: Given $N=500(0.1)^{0.7^{t}}$
(a) What is N when $t=0$?
(b) What is t when $N=100$?

